有两种流行的损失功能用于视觉检索,即三胞胎损失和对比度学习损失,这两者本质上都可以最大程度地减少负对和正对的相似性之间的差异。更具体地说,在现有的检索模型中广泛使用的硬采矿(三重态HN)的三胞胎损失很容易落入训练中的局部最小值。另一方面,广泛用于视觉的预训练中的视觉对比学习损失(VLC)已被证明可以在视觉语言检索上获得显着的性能提高,但通过使用微调的性能来实现。小型数据集上的VLC并不令人满意。本文提出了对视觉语言检索的统一损失相似性优化,为理解现有的损失功能提供了强大的工具。我们的统一损失包括VLC的硬样品挖掘策略,并引入了三胞胎损失使用的边距,以获得更好的相似性分离。结果表明,三重态HN和VLC都是我们统一损失的特殊形式。与三胞胎-HN相比,我们的统一损失具有快速的收敛速度。与VLC相比,我们的统一损失更具歧视性,可以在下游微调任务中更好地概括。图像文本和视频检索基准测试的实验表明,我们的统一损失可以显着提高最新检索模型的性能。
translated by 谷歌翻译
For time-critical IoT applications using deep learning, inference acceleration through distributed computing is a promising approach to meet a stringent deadline. In this paper, we implement a working prototype of a new distributed inference acceleration method HALP using three raspberry Pi 4. HALP accelerates inference by designing a seamless collaboration among edge devices (EDs) in Edge Computing. We maximize the parallelization between communication and computation among the collaborative EDs by optimizing the task partitioning ratio based on the segment-based partitioning. Experimental results show that the distributed inference HALP achieves 1.7x inference acceleration for VGG-16. Then, we combine distributed inference with conventional neural network model compression by setting up different shrinking hyperparameters for MobileNet-V1. In this way, we can further accelerate inference but at the cost of inference accuracy loss. To strike a balance between latency and accuracy, we propose dynamic model selection to select a model which provides the highest accuracy within the latency constraint. It is shown that the model selection with distributed inference HALP can significantly improve service reliability compared to the conventional stand-alone computation.
translated by 谷歌翻译
与自然语言处理的XAI旨在产生可读的解释,作为AI决策的证据,以解决解释性和透明度。但是,从HCI的角度来看,当前的方法仅着眼于提供单一的解释,该解释无法解决人类思想和语言经验的多样性。因此,本文通过提出一个生成XAI框架,交互来解决此差距(解释并预测与上下文条件变分自动编码器查询)。我们的新框架分为两个步骤提供了解释:(一步)解释和标签预测; (第二步)各种证据生成。我们在基准数据集E-SNLI上对变压器体系结构进行密集实验。我们的方法在第一步中,针对解释生成(BLEU的增长率高达4.7%)的最先进基线模型的竞争性或更好的表现;它还可以在第二步中产生多种不同的解释。
translated by 谷歌翻译
知识驱动的对话世代最近取得了非凡的突破。与一般的对话系统相比,卓越的知识对话系统可以通过预先提供的知识产生更多信息和知识渊博的响应。但是,在实际应用中,对话系统无法事先提供相应的知识。为了解决该问题,我们设计了一个名为DRKQG的知识驱动的对话系统(\ emph {通过查询生成动态检索知识,以获取信息性对话响应})。具体而言,系统可以分为两个模块:查询生成模块和对话生成模块。首先,利用时间感知机制来捕获上下文信息,并可以生成查询以检索知识。然后,我们集成了复制机制和变压器,该机制允许响应生成模块产生从上下文和检索知识中得出的响应。 LIC2022,语言和情报技术竞赛的实验结果表明,我们的模块在自动评估指标上的大幅度优于基线模型,而BAIDU语言学团队的人类评估表明,我们的系统在事实上取得了令人印象深刻的结果,实际上是正确的,知识渊博。
translated by 谷歌翻译
巨大的开放在线课程(MooCs)已成为电子学习的热门选择,因为他们的灵活性很大。但是,由于大量的学习者及其多样化的背景,它征税,以提供实时支持。学习者可能会在各自的MooC论坛上发布他们的混乱和斗争,但随着MooC教师的大量员额和高工作量,教师不太可能识别所有需要干预的学习者。由于数据的不平衡和任务的复杂性,已被研究是一种自然语言处理(NLP)问题的研究,并且已知是具有挑战性的。在本文中,我们探讨了贝叶斯的第一次对学习者的文本帖子进行了两种方法:蒙特卡罗辍学和变分推论,作为评估学习者帖子的教师干预需求的新解决方案。我们基于在类似情况下基于概率模型的基于概率模型的概率模型进行比较模型,对于应用预测的不同情况。结果表明,贝叶斯深度学习提供了传统神经网络未提供的批判性不确定性措施。这增加了对AI的说明,信任和稳健性,这在基于教育的应用中至关重要。另外,与非概率神经网络相比,它可以实现类似或更好的性能,以及较低的方差。
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译
High-utility sequential pattern mining (HUSPM) has emerged as an important topic due to its wide application and considerable popularity. However, due to the combinatorial explosion of the search space when the HUSPM problem encounters a low utility threshold or large-scale data, it may be time-consuming and memory-costly to address the HUSPM problem. Several algorithms have been proposed for addressing this problem, but they still cost a lot in terms of running time and memory usage. In this paper, to further solve this problem efficiently, we design a compact structure called sequence projection (seqPro) and propose an efficient algorithm, namely discovering high-utility sequential patterns with the seqPro structure (HUSP-SP). HUSP-SP utilizes the compact seq-array to store the necessary information in a sequence database. The seqPro structure is designed to efficiently calculate candidate patterns' utilities and upper bound values. Furthermore, a new upper bound on utility, namely tighter reduced sequence utility (TRSU) and two pruning strategies in search space, are utilized to improve the mining performance of HUSP-SP. Experimental results on both synthetic and real-life datasets show that HUSP-SP can significantly outperform the state-of-the-art algorithms in terms of running time, memory usage, search space pruning efficiency, and scalability.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.
translated by 谷歌翻译
With the development of natural language processing techniques(NLP), automatic diagnosis of eye diseases using ophthalmology electronic medical records (OEMR) has become possible. It aims to evaluate the condition of both eyes of a patient respectively, and we formulate it as a particular multi-label classification task in this paper. Although there are a few related studies in other diseases, automatic diagnosis of eye diseases exhibits unique characteristics. First, descriptions of both eyes are mixed up in OEMR documents, with both free text and templated asymptomatic descriptions, resulting in sparsity and clutter of information. Second, OEMR documents contain multiple parts of descriptions and have long document lengths. Third, it is critical to provide explainability to the disease diagnosis model. To overcome those challenges, we present an effective automatic eye disease diagnosis framework, NEEDED. In this framework, a preprocessing module is integrated to improve the density and quality of information. Then, we design a hierarchical transformer structure for learning the contextualized representations of each sentence in the OEMR document. For the diagnosis part, we propose an attention-based predictor that enables traceable diagnosis by obtaining disease-specific information. Experiments on the real dataset and comparison with several baseline models show the advantage and explainability of our framework.
translated by 谷歌翻译
Because of the necessity to obtain high-quality images with minimal radiation doses, such as in low-field magnetic resonance imaging, super-resolution reconstruction in medical imaging has become more popular (MRI). However, due to the complexity and high aesthetic requirements of medical imaging, image super-resolution reconstruction remains a difficult challenge. In this paper, we offer a deep learning-based strategy for reconstructing medical images from low resolutions utilizing Transformer and Generative Adversarial Networks (T-GAN). The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction. Furthermore, we weighted the combination of content loss, adversarial loss, and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN. In comparison to established measures like PSNR and SSIM, our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.
translated by 谷歌翻译